Mechanistic basis for high reactivity of (salen)Co-OTs in the hydrolytic kinetic resolution of terminal epoxides.
نویسندگان
چکیده
The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co-OH catalyst and a Lewis acidic (salen)Co-X catalyst. The commonly used (salen)Co-OAc and (salen)Co-Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co-OH and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co-OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co-X precatalysts and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co-OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction.
منابع مشابه
Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides.
The mechanism of the hydrolytic kinetic resolution (HKR) of terminal epoxides was investigated by kinetic analysis using reaction calorimetry. The chiral (salen)Co-X complex (X = OAc, OTs, Cl) undergoes irreversible conversion to (salen)Co-OH during the course of the HKR and thus serves as both precatalyst and cocatalyst in a cooperative bimetallic catalytic mechanism. This insight led to the i...
متن کاملEnhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages.
The solid catalyst with high catalytic activity and enantioselectivity in the hydrolytic kinetic resolution (HKR) of epoxides was prepared by confining Co(Salen) in the nanocage of SBA-16 through reducing the pore entrance size using a silylation method. It was found that the activity of the solid catalysts increased with the number of [Co(Salen)] molecules per nanocage increasing, and the soli...
متن کاملHighly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)Co(III) complexes. Practical synthesis of enantioenriched terminal epoxides and 1,2-diols.
The hydrolytic kinetic resolution (HKR) of terminal epoxides catalyzed by chiral (salen)Co(III) complex 1 x OAc affords both recovered unreacted epoxide and 1,2-diol product in highly enantioenriched form. As such, the HKR provides general access to useful, highly enantioenriched chiral building blocks that are otherwise difficult to access, from inexpensive racemic materials. The reaction has ...
متن کاملAsymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis.
Epoxides are versatile building blocks for organic synthesis. However, terminal epoxides are arguably the most important subclass of these compounds, and no general and practical method exists for their production in enantiomerically pure form. Terminal epoxides are available very inexpensively as racemic mixtures, and kinetic resolution is an attractive strategy for the production of optically...
متن کاملEnhancement of Soluble Expression and Biochemical Characterization of Two Epoxide Hydrolases from Bacillus
Background: Enantiopure epoxides are important intermediates in the synthesis of high-value chiral chemicals. Epoxide hydrolases have been exploited in biocatalysis for kinetic resolution of racemic epoxides to produce enantiopure epoxides and vicinal diols. It is necessary to obtain sufficient stable epoxide hydrolases with high enantioselectivity to meet the requirements of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of organic chemistry
دوره 77 5 شماره
صفحات -
تاریخ انتشار 2012